
Euryale

Kavitha Ranganathankrangana@cs.uchicago.edu
Catalin Dumitrescu cldumitr@cs.uchicago.edu

Jens-S. Vöckler voeckler@cs.uchicago.edu
Michael Wilde wilde@mcs.anl.gov

12/10/2003

Author Date Modification

Jens Vöckler 20031210 initial document
Jens Vöckler 20040126 Additions for log files
Jens Vöckler 20040406 Documenting new properties
Jens Vöckler 20040420 Adding a few paragraphs
Jens Vöckler 20040614 Adding some missing features

1

Contents 2

Contents

1 Overview 3

2 From DAX to DAG 3

3 Configuration Files 5
3.1 Workflow Properties (WF) 5
3.2 Pool Configuration (PC) 7
3.3 Transformation Catalog (TC) 7
3.4 Replica Catalog (RC) 7

4 Execution 7
4.1 Debugging and Logfiles 8

4.1.1 The Common Logfile .. . 8
4.1.2 The Job’s Logfile 8

4.2 The Prescript 9
4.2.1 Kavitha’s Site Selector 10

4.3 The Postscript 11
4.3.1 Kavitha’s Popularity Manager (KPM) 11

1 Overview 3

1 Overview

The Euryale system is a somewhat complex system to accomplish a complex task: Run jobs in the grid.
While many such tools exist today, Euryale tries to take a late binding approach with a dash of fault
tolerance through replanning, separately for each job.

Figure 1 shows the system overview as a Yourdon Flow chart with data- and control flows.

.dax file

.dag file

d2d

DAGMan prescript

Condorpostscript

submit templ. wf control

Kavitha’s
site

selector

.sub file

.out file

.err file Globus

VDC

gendax

RC*PC

TC

stage-in PIN*

RC*

PIN* stage-out

stage filestage file

Table 1: Overview over planning workflow.

The key players are the DAX to DAG toold2d, the job’sprescriptand the job’spostscript. Each will be
described in detail in sections of its own.

From the Virtual Data Catalog (VDC), a user may chose to materialize one or more data products, which
includes their dependent computations. The resulting.dax file contains the workflow necessary to ma-
terialize the products, but at a pure logical level. Thus, the workflow will usually go back to those input
files or generator jobs which don’t have a predecessor known to the VDC. It is possible, though, to restrict
the depth of the depth-first search tree.

It is also possible for the requested data products to form a disconnected graph – which means that more
parallelism can be achieved.

2 From DAX to DAG

The.dax file is converted by thed2d tool into a Condor DAGMan.dag file, and a number of related
Condor.sub submit files. The submit files are referenced by the.dag file.

Thed2d converter bridges between the GVDS logical router (Chimera), and the Euryale logic. Thus, it
is controlled by two property files: The GVDS properties, described elsewhere, and the workflow control
properties, described in section 3.1 (page 5).

The submit files’ skeleton is based on substitutions from a submit file template.sft. The template con-
tains a number of placeholders for different purposes. Through the templating mechanism, the workflow
can be easily adapted to different site requirements.

2 From DAX to DAG 4

The template contains two kinds of variables,@@variable@@ and!!variable!! holes. The first kind
of variables are substituted by thed2d tool. Some variables substitute to their final value, some toan
empty string, and some to!!variable!! for a second round of deferred substitutions at the late planning
point. Table 2 shows the recognized identifiers and substitutions during the early phase.

variable substitution

ARGS taken from the job’s arguments, may be empty.
CONFIG translates into the name of the k.2 configuration file.
DAXLABEL value from XMLadag@label attribute. It is an arbitrary label chosen by the

user at DAX creation time.
DAXMTIME is the last modification time of the.dax file.
DV value from the combined XMLjob@dv-* attributes. This value names the

VDL derivation.
JOBID value from XMLadag/job@id attribute. Each ID is unique to the workflow,

but will repeat between workflows.
LEVEL value from XML adag/job@level attribute. The level is the distance from

the requested data product.
MAXPEND value fromwf.max.pending property: The maximum number of seconds

a job is willing to spend in Condor’s localidle state, which is equivalent to
remote pending, until the job is killed for replanning. Thisvalue defaults to 2
hours. A minimum of 10 minutes is enforced.

STDIN translates into a later substituted LFN, possibly empty, from the XML
adag/job/stdin element.

STDERR translates into a later substituted LFN, possibly empty, from the XML
adag/job/stderr element.

STDOUT translates into a later substituted LFN, possibly empty, from the XML
adag/job/stdout element.

SUBMIT becomes the name of the submit file itself.
SUBBASE becomes the submit filename minus the.sub suffix.
TEMPLATE is the submit file template.sft filename.
TR value from the combined XMLjob attributes namespace, name, and

version. This value names the VDL transformation.
VERSION for starters 1.2 will do.

Table 2: Early @@variable@@ substitutions.

The d2d transformer uses a variety of commandline arguments to control the output. Except for the
location of the.sft file and the.dax input file, these arguments are optional.

The--dir option takes as argument the directory into which the new files are to be generated. A user
should use a separate directory for each workflow. While the converter warns about existing files, it will

3 Configuration Files 5

still overwrite them. By default, all output is generated inthe current working directory, which is usually
not the user’s intention.

The --prescript option allows to override the location of the file to be inserted as DAGMan pre-
script. By default, the position is determined from the workflow configuration file. Similarily works the
--postscript option.

The--wfrc option takes as argument the location of the workflow configuration file. This file is a Java
property-style file. It allows to configure multiple aspectsof the conversion, as well as aspects during
runtime. By default, a file.wfrc is read from the user’s|$HOME— directory.

The--template option is mandatory, and points to the location of the submitfile template. This option
allows for easy exchange of compute job characteristics fordifferent pool sets, e.g. Grid3 versus LCG1.

Any other argument not documented here is experimental, andmay not work.

The final argument is the location of the.dax file to convert. This file contains the workflow.

Please note that no optimizations are attempted. Since the.dax file contains usually all necessary work-
flows to generate a data product, so will all the computationspresent in the.dax file be executed.

3 Configuration Files

3.1 Workflow Properties (WF)

All workflow configuration properties start with the constant prefixwf<dot>. This prefix will be omitted
in the discussion of table 3.

key value meaning

site.selector path Absolute path to the site selector.
site.temp.suffix string Filename suffix of the temporary file that will generated for

the site selector. Defaults to.lof.
site.temp.dir dir Location of the directory to generate temporary files in. De-

faults to the system’s default/tmp on most platforms.
remote.job.queues kv list Comma-separated list of key=value pairs. Each keys repre-

sents a site handle, and each value the name of the queue to
use for that site.

remote.job.projects kv list Comma-separated list of key=value pairs. Each keys repre-
sents a site handle, and each value the name of the project to
use for that site.

popularity.manager path Absolute path to the popularity manager application.
site.temp.unlink
keep.rewrite boolean Keep backups of raw submit files after successful job runs.
script.pre path Absolute path to the prescript.
script.post path Absolute path to the postscript.

continued on next page

3 Configuration Files 6

continued from last page
key value meaning

replica.pin Future: File pinning hook.
pool.style old Format of the pool configuration. The file is compatible with

the Pegasus old textual pool.config file. The only supported
style is ”old”.

pool.file path Absolute path to the pool.config file.
tc.style old Format of the transformation catalog. The file is compatible

with the Pegasus old textual pool.config file. The only sup-
ported style is ”old”.

tc.file path Absolute path to the tc.data file.
rc.style Dbm LRC Style of the replica catalog interface.
rc.file path In BSD-DB mode, this is the absolute path to the database

containing the replica catalog.
rc.lrc URI The contact for your local LRC.
rc.java.home dir The directory where Java is installed. Defaults to

$JAVA HOME.
rc.globus.location dir The directory where Globus is installed. Defaults to

$GLOBUSLOCATION.
rc.grc path Absolute path to Globus’globus-rls-cli.
rc.r c path Absolute path to the GVDSrls-client.
job.retries positive Number of retries for failed compute jobs. This also applies

to failed post-jobs.
site.temp.unlink boolean Remove temporary files after done. Defaults totrue.
site.temp.suffix suffix The suffix to use when creating list of files in temporary files.

Defaults to suffix.lof.
site.temp.dir dir The directory where to generate temporary files. Defaults to

the value of Java propertyio.tmp. Try /dev/shm on mod-
ern Linuxes.

bad.timeout integer The timeout until a bad site is retried. This is an experimental
feature yet, which has no effect on production levels.

cache.manager path The name of the cache manager application. This is a data
scheduling addition. Defaults to a noop application.

data.scheduler path The name of the data scheduling application. This is a data
scheduling addition. Defaults to a noop.

popularity.table path The location of a file which maintains the popularity of files.
This is a data scheduling addition.

Table 3: Properties to configuration a workflow.

The workflow control file contains the configurations and user-selectable options for all pieces of the Eu-
ryale framework. Using the simple properties permits various call-outs, and user-provided implementation

4 Execution 7

of Euryale’s abstract interfaces.

3.2 Pool Configuration (PC)

[describe interface]

[currently only old textual style, rDBMS possible]

3.3 Transformation Catalog (TC)

[describe interface]

[currently only old single-line textual style, XML/rDBMS possible]

3.4 Replica Catalog (RC)

[describe interface]

[currenly either local BSD-DB file, or RLS-LRC service]

4 Execution

The generated.dag with its submit files can be executed by DAGMan. DAGMan will inturn invoke the
prescript, which calls out to Kavitha’s site selector (KSS1). The KSS logic selects one from the number of
available sites.

The original site set is determined by the sites present in the PC. The set of sites is further limited by
those sites in the TC, which have the computation available to them. The site selector choses a site from a
given list depending on a variety of strategies. The simplest strategy is pure random, which works well for
trying out things, and an always-the-same, which is good fortesting a specific site. Fancier algorithms,
which take the presence of data at the destination site into account, are presented separately by Kavitha
and Catalin.

For the selected site, the submit file is finalized by substituting the!!var!! variables. For the substitution,
all profiles are combined, with the VDL profiles at lowest priority, the PC profiles next, the TC profiles
above that, and potential user profiles to override any lowerpriorities. Detailled overwrite, merge, or
replace handling is not implemented - a higher priority overwrite a lower priority value.

Input files are transferred always using submit-host-initiated 3rd party transfers. If the transfers fail for
any reason, replanning takes place, marking the failed siteas ”bad” for the job. Among the fatal workflow
error condition is running out of runnable sites.

If the prescript ran successfully, DAGMan will start the compute job via Condor-G. Once the compute job
finished, DAGMan will run the post script, which parses the kickstart record, and transfers output files.

1There are several ones available. The interface is file-driven and simple, see 4.2.1

4 Execution 8

Currently, it will leave output files just where they are. There is no central collection, as Kavitha research
an asynchroneous data scheduler.

If the post script determines that a transfer failed, or the job failed, the postscript will fail, and DAGMan
will up to the number of RETRIES attempt to run the job again, starting with the prescript. The postscript
also tagged the failed site as ”bad” to keep the KSS from chosing it again. There is no central knowledge
of bad sites (yet).

4.1 Debugging and Logfiles

Pre- and postscript protocol verbosely what they are doing in a per job.dbg file. Each jobs also logs
certain information of global interest into a common, shared euryale.log file.

4.1.1 The Common Logfile

Currently, the common logfile name is hard-coded aseuryale.log. The common log is required for
things like compute time, number of transfers, etc. One suchfile is associated with each workflow. For
reasons of performance, the information in this file is few and restricted. Future version may use the
workflow label to determine a more unique filename to avoid common log filename clashes.

meaning

1

log event tag to aide later parsing:

tag meaning

prs prescript started
prf prescript finished
pos postscript started
prf postscript finished
si1 stage-in report
sum remote exitcode

2 ISO 8601 timestamp, local zone offset omitted.
3 process ID of the logging script in brackets.
4 unique job identifier.
5 PRE for prescript, POST for postscript entries.
6 free format log entry.

Table 4: Workflow-common log file.

The central logfile contains its entries in 6 or more columns,one entry per log incidence. Table 4 shows
the layout of the common log file.

4.1.2 The Job’s Logfile

Each job protocols extensive debug information into a job-specific log file. The name of the job-specific
log file is derived from the name of the submit file. The extension .sub is replaced with.dbg for the

4 Execution 9

job logfile.

meaning

1 ISO 8601 timestamp, local zone offset omitted.
2 process ID of the logging script in brackets.
3 PRE for prescript, POST for postscript entries.
4 free format log entry.

Table 5: Job-specific log file.

The layout of the job logfile is similar to the layout of the common logfile. Its particular layout is shown
in table 5. There are no incidence tags, as the number of log messages is proliferate. Since the log file is
specific for a single compute job, it will not repeat the job identifier, either.

If problems are experienced, the job logfile usually contains clues as to why some things happen. For
instance, a changing pid is an indication of replanning. Often, the reason for replanning can be gleaned
from the information in the debug file, too.

4.2 The Prescript

variable substitution

WORKDIR value to be substituted with the working directory to use on the
remote site’s worker node. This is taken from the 5th column of
the pool configuration

SITE pool handle for the chosen site, see pool configuration 3.2. This
is the 1st column from the pool configuration.

KICKSTART the location of the remote application launch utility. Thisis the
6th column of the pool configuration.

TRANSFORMATION will be substituted with the logical transformation name.
APPLICATION will be substituted with the remote application’s location.
GLOBUSSCHEDULER is the jobmanager contact string for the remote site. This isthe

3rd column from the pool configuration.
STDIO In case a job tracks any of its stdio, this will convert to the appro-

priate kickstart invocation arguments.
GLOBUSRSL will extract from all profiles the theglobus namespace, and

convert values into RSL strings.
CONDORGLOBUSRSL same as GLOBUSRSL, except that the result is prefixed with

globusrsl = , and empty RSL will not generate any line.
CONDORADDON will extract values from thecondor profile namespace. This

allows for job-specific Condor additions.
ENVIRONMENT will extract values from theenv profile namespace to generate a

common environment setting.
LFN:xxx This special key will substitute the logical filenamexxxx with

its storage filename (SFN).
continued on next page

4 Execution 10

continued from last page
variable substitution

ENV:xxx This special key will substitute the environement value forkey
xxxx in the submit hosts environment.

Table 6: Late !!variable!! substitutions.

4.2.1 Kavitha’s Site Selector

The site to run a compute job is selected dynamically at the point of time a compute job becomes runnable.
The dynamic site selector is coded via a call-out to an external program. To talk to the site selector, a
temporary file is generated, which contains two sections, for example:

[filenames]
krangana.f.b

[sites]
UM_ATLAS gsiftp://atgrid.grid.umich.edu/
IU_ATLAS_Tier2 gsiftp://atlas.iu.edu/
UBuffalo_CCR gsiftp://acdc.ccr.buffalo.edu/

The first section lists the input filenames for the given computation. The second section lists pool handles,
followed by the gridftp server base-URI for that particularpool. Note that only the gridftp hostname, and
potentially a port, will be listed.

The prescript creates the above data in a temporary filename.It calls out to the site selector application
specified in the WF propertywf.site.selector, passing the name of the temporary file as its argu-
ment. The site selector in turn prints a stringSOLUTION:xxx on itsstdout, wherexxx is the site handle
that was chosen.

The chosen site must be a site handle from the second section.During replanning of jobs, bad sites are
cached for each compute job, and omitted from the list of sites passed to the site selector. If no valid
compute sites can be found, the prescript exits with an error.

The beauty of the external site selector is that it can be coded in any programming language that is natively
runnable in the host environment, usually any scripting or compiled language2

A demo site selector, which randomly choses from the given site set, is included in the distribution. More
elaborate schemes allow the integration of file popularity and monitoring feedback.

The information contained in the temporary communication file between Euryale logic and external site
selector may be subject to extension in the future.

2Java classes work with Linux, if thebinfmt kernel trappings are appropriately configured.

4 Execution 11

4.3 The Postscript

The post script logic parser the information returned by theexternal kickstart file for job success. However,
it will not, at this point, fill information into the provenance tracking subcatalog of the VDC.

If the postscript determines that an execution failed, it will fail itself, and thus have DAGMan restart the
work with the prescript. Such retry will have marked the failed site as locally bad, excluding it from
replanning.

The postscript may move files from the current working directory to the site’s storage element or directy,
using a submit-host initiated 3rd party copy. However, result files will remain at the site they were pro-
duced. Euryale does not (yet) move results that are dear to the user, and tagged as such, to any output
storage element, or list thereof.

4.3.1 Kavitha’s Popularity Manager (KPM)

Each compute job that ran to a successful completion will update the popularity manager for input files.
To talk to the dynamically popularity manager, a temporary file is generated, which contains just the list
of logical input filenames. Note that this file may be empty.

The popularity manager is invoked with the site and the file offiles as commandline arguments. It is not
expected to return anything. The default popularity manager is a no-operation. More elaborate popular-
ity managers can update the popularity of a file, and thus asynchroneously push hot-spot files to likely
candidates. Or they can just keep statistics.

	Overview
	From DAX to DAG
	Configuration Files
	Workflow Properties (WF)
	Pool Configuration (PC)
	Transformation Catalog (TC)
	Replica Catalog (RC)

	Execution
	Debugging and Logfiles
	The Common Logfile
	The Job's Logfile

	The Prescript
	Kavitha's Site Selector

	The Postscript
	Kavitha's Popularity Manager (KPM)

